Answer :
I guess that your question is:
[tex]log[6*(2x-5)]=2[/tex]
So, we can apply this property of log
[tex]log_b~(a)=c\Leftrightarrow a=b^c[/tex]
them...
[tex]log[6*(2x-5)]=2[/tex]
[tex]6*(2x-5)=10^2[/tex]
[tex]12x-30=100[/tex]
[tex]12x=100+30[/tex]
[tex]12x=130[/tex]
[tex]x=\frac{130}{12}[/tex]
simplifying
[tex]\boxed{\boxed{x=\frac{65}{6}}}[/tex]
[tex]log[6*(2x-5)]=2[/tex]
So, we can apply this property of log
[tex]log_b~(a)=c\Leftrightarrow a=b^c[/tex]
them...
[tex]log[6*(2x-5)]=2[/tex]
[tex]6*(2x-5)=10^2[/tex]
[tex]12x-30=100[/tex]
[tex]12x=100+30[/tex]
[tex]12x=130[/tex]
[tex]x=\frac{130}{12}[/tex]
simplifying
[tex]\boxed{\boxed{x=\frac{65}{6}}}[/tex]
Answer:
0.954243x−2.385606=2
Let's solve your equation step-by-step.
0.954243x−2.385606=2
Step 1: Add 2.385606 to both sides.
0.954243x−2.385606+2.385606=2+2.385606
0.954243x=4.385606
Step 2: Divide both sides by 0.954243.
0.954243x/0.954243 = 4.385606/0.954243
x=4.595901
Answer:
x=4.595901
Step-by-step explanation: