Answered

Simplify. (Polynomials)

1. (2cd^3)(-2c)(3c^d) =

2. (2x^2)(3x^6) - (4x^4)(2x^4) =

3. (6x^2)(3x^6) + (4x^4)(2x^4) =

4. (2ab^2)^2(-3a^2b^2) =

5. -6a^3(a^2-2a+1) =

6. -2xy(x^2-3xy+y^2) =

7. (a+b) (2a^2-ab+3b^2) =

(Please help asap!)



Answer :

1. [tex](2cd^{3})(-2c)(3c^{d})=\\-12c^{d+2}d^{3}[/tex]

2. [tex](2x^{2})(3x^{6})-(4x^{4})(2x^{4})=\\6x^{8}-8x^{8}=\\-2x^{8}[/tex]

3. [tex](6x^{2})(3x^{6})+(4x^{4})(2x^{4})=\\18^{8}+8x^{8}=\\26x^{8}[/tex]

4. [tex](2ab^{2})^{2}(-3a^{2b^{2}})=\\4a^{2}b^{4}(-3a^{2b^{2}})=\\-12a^{2b^{2}+2}b^{4}[/tex]

5. [tex]-6a^{3}(a^{2}-2a+1)=\\-6a^{5}+12a^{4}-6a^{3}[/tex]

6. [tex]-2xy(x^{2}-3xy+y^{2})=\\-2x^{3}y+6x^{2}y^{2}-2xy^{3}[/tex]

7. [tex](a+b)(2a^{2}-ab+3b^{2})=\\2a^{3}-a^{2}b+3ab^{2}+2a^{2}b-ab^{2}+3b^{3}=\\2a^{3}+3b^{3}+a^{2}b+2ab^{2}[/tex]
1.[tex](2cd^{3})(-2c)(3cd) [/tex]
   [tex]-12c^{3}d^{4}[/tex]

2.[tex](2x^{2})(3x^{6}) - (4x^{4})(2x^{4})[/tex]
   [tex]6x^{8} - 8x^{8}[/tex]
   [tex]-2x^{8}[/tex]

3.[tex](6x^{2})(3x^{6}) + (4x^{4})(2x^{4})[/tex]
   [tex]18x^{8} + 8x^{8}[/tex]
   [tex]26x^{8}[/tex]

4.[tex](2ab^{2})^{2}(-3a^{2}b^{2})[/tex]
   [tex]((2ab^{2})(2ab^{2}))(-3a^{2}b^{2})[/tex]
   [tex](4a^{2}b^{4})(-3a^{2}b^{2})[/tex]
   [tex]-12a^{4}b^{6}[/tex]

5.[tex]-6a^{3}(a^{2} - 2a + 1)[/tex]
   [tex]-6a^{3}(a^{2}) + 6a^{3}(2a) - 6a^{3}(1)[/tex]
   [tex]-6a^{5} + 12a^{4} - 6a^{3}[/tex]

6.[tex]-2xy(x^{2} - 3xy + y^{2})[/tex]
   [tex]-2xy(x^{2}) + 2xy(3xy) - 2xy(y^{2})[/tex]
   [tex]-2x^{3}y + 6x^{2}y^{2} - 2xy^{3}[/tex]

7.[tex](a + b)(2a^{2} - ab + 3b^{2})[/tex]
   [tex](2a^{3} - a^{2}b + 3ab^{2} + 2a^{2}b - ab^{2} + 3b^{3})[/tex]
   [tex](2a^{3} - a^{2}b + 2a^{2}b + 3ab^{2} - ab^{2} + 3b^{3})[/tex]
   [tex]2a^{3} + a^{2}b + 2ab^{2} + 3b^{3}[/tex]