Answer :
Volume of a cylinder of radius r, height h : [tex]V=\pi*r^2*h[/tex]
hence the height of the liquid in the first cylinder is [tex]h1=\frac{188.4}{2^2\pi}=15[/tex] cm, and in the second cylinder [tex]h2=\frac{314}{2^2\pi}=25[/tex] cm
Hence the difference is h2-h1=25-15=10 cm
hence the height of the liquid in the first cylinder is [tex]h1=\frac{188.4}{2^2\pi}=15[/tex] cm, and in the second cylinder [tex]h2=\frac{314}{2^2\pi}=25[/tex] cm
Hence the difference is h2-h1=25-15=10 cm
Answer:
The difference of height is 10 cm
Step-by-step explanation:
Monte performs an experiment using 2 identical graduated cylinders with a radius of 2 cm.
The volume of the liquid in the first graduated cylinder is 188.4 cm³
The volume of the liquid in the second graduated cylinder is 314 cm³
Let height of first graduated cylinder be h₁ and radius (r) = 2 cm
Let height of second graduated cylinder be h₂ and radius (r) = 2 cm
Formula:
[tex]\text{Volume of cylinder}=\pi r^2h[/tex]
[tex]\text{Volume of 1st cylinder}=\pi\cdot 2^2h_1[/tex]
[tex]188.4=3.14\cdot 2^2\cdot h_1[/tex]
[tex]h_1=15[/tex] cm
[tex]\text{Volume of 2nd cylinder}=\pi\cdot 2^2h_2[/tex]
[tex]314=3.14\cdot 2^2\cdot h_2[/tex]
[tex]h_2=25[/tex] cm
The difference in the height of the liquid in two cylinder,
[tex]\Rightarrow h_2-h_1[/tex]
[tex]\Rightarrow 25-15[/tex]
[tex]\Rightarrow 10[/tex] cm
Hence, The difference of height is 10 cm