Answer :
Don't feel like typing out all the math, but if I did my math correct(think sure I did) the chart should be layed out like this
Batch 1 Batch 2 Batch 3
Red 2 3 3 1/3
Blue 1 1/2 2 1/4 2 1/2
White 2 1/2 3 3/4 4 1/6
You need to make a common denominator
Red=[tex] \frac{4}{12} [/tex]
Blue=[tex] \frac{3}{12} [/tex]
White=[tex] \frac{5}{12} [/tex]
---------------------------------------
Batch 1:
[tex]2 \frac{1}{2} = \frac{5}{2} [/tex]
You need to make a common denominator with the white colors
[tex] \frac{5}{2} * \frac{6}{6} = \frac{30}{12} [/tex]
[tex] \frac{30}{12} = \frac{5}{12} x[/tex]
5×6=30
[tex] \frac{30}{12} = 2\frac{1}{2} [/tex]
so for every one 1/12 once, there is six ounces
You do the same for red by multiplying 6 by the numerator
[tex]6* \frac{4}{12} = \frac{24}{12} =2[/tex]
Same for blue
[tex] 6*\frac{3}{12} [/tex][tex]= \frac{18}{12} =1 \frac{1}{2} [/tex]
Answer:
White=[tex]2 \frac{1}{2} [/tex]
Blue=[tex]1 \frac{1}{2} [/tex]
Red=2
----------------------------------------
Batch 2:
You use the same process as before
For blue
[tex]2 \frac{1}{4} = \frac{9}{4} [/tex]
[tex] \frac{9}{4} * \frac{3}{3} = \frac{27}{12} [/tex]
[tex] \frac{27}{12} = \frac{3}{12} x[/tex]
[tex]3*9=27[/tex]
For every 1/12, there is 9
For red,
Multiply 9 by the numerator of the colors
[tex] \frac{4}{12} *9= \frac{36}{12} =3[/tex]
For white,
[tex] \frac{5}{12} *9= \frac{45}{12} = 3\frac{3}{4} [/tex]
Answer:
Blue=[tex]2 \frac{1}{4} [/tex]
Red=[tex]3[/tex]
White=[tex]3 \frac{3}{4} [/tex]
----------------------------------------------
Batch 3:
Same process as before
Red,
[tex]3 \frac{1}{3} = \frac{10}{3} [/tex]
[tex] \frac{10}{3} * \frac{4}{4} = \frac{40}{12} [/tex]
[tex] \frac{40}{12} = \frac{4}{12} x[/tex]
[tex]4*10=40[/tex]
So for every 1/12, you multiply by 10
for blue,
[tex] \frac{3}{12} *10= \frac{30}{12} =2 \frac{1}{2} [/tex]
for white,
[tex] \frac{5}{12} *10= \frac{50}{12} =4 \frac{1}{6} [/tex]
Answers:
Red= [tex]3 \frac{1}{3} [/tex]
Blue=[tex] 2\frac{1}{2} [/tex]
White=[tex] 4\frac{1}{6} [/tex]
Remember all of this is in ounces
Red=[tex] \frac{4}{12} [/tex]
Blue=[tex] \frac{3}{12} [/tex]
White=[tex] \frac{5}{12} [/tex]
---------------------------------------
Batch 1:
[tex]2 \frac{1}{2} = \frac{5}{2} [/tex]
You need to make a common denominator with the white colors
[tex] \frac{5}{2} * \frac{6}{6} = \frac{30}{12} [/tex]
[tex] \frac{30}{12} = \frac{5}{12} x[/tex]
5×6=30
[tex] \frac{30}{12} = 2\frac{1}{2} [/tex]
so for every one 1/12 once, there is six ounces
You do the same for red by multiplying 6 by the numerator
[tex]6* \frac{4}{12} = \frac{24}{12} =2[/tex]
Same for blue
[tex] 6*\frac{3}{12} [/tex][tex]= \frac{18}{12} =1 \frac{1}{2} [/tex]
Answer:
White=[tex]2 \frac{1}{2} [/tex]
Blue=[tex]1 \frac{1}{2} [/tex]
Red=2
----------------------------------------
Batch 2:
You use the same process as before
For blue
[tex]2 \frac{1}{4} = \frac{9}{4} [/tex]
[tex] \frac{9}{4} * \frac{3}{3} = \frac{27}{12} [/tex]
[tex] \frac{27}{12} = \frac{3}{12} x[/tex]
[tex]3*9=27[/tex]
For every 1/12, there is 9
For red,
Multiply 9 by the numerator of the colors
[tex] \frac{4}{12} *9= \frac{36}{12} =3[/tex]
For white,
[tex] \frac{5}{12} *9= \frac{45}{12} = 3\frac{3}{4} [/tex]
Answer:
Blue=[tex]2 \frac{1}{4} [/tex]
Red=[tex]3[/tex]
White=[tex]3 \frac{3}{4} [/tex]
----------------------------------------------
Batch 3:
Same process as before
Red,
[tex]3 \frac{1}{3} = \frac{10}{3} [/tex]
[tex] \frac{10}{3} * \frac{4}{4} = \frac{40}{12} [/tex]
[tex] \frac{40}{12} = \frac{4}{12} x[/tex]
[tex]4*10=40[/tex]
So for every 1/12, you multiply by 10
for blue,
[tex] \frac{3}{12} *10= \frac{30}{12} =2 \frac{1}{2} [/tex]
for white,
[tex] \frac{5}{12} *10= \frac{50}{12} =4 \frac{1}{6} [/tex]
Answers:
Red= [tex]3 \frac{1}{3} [/tex]
Blue=[tex] 2\frac{1}{2} [/tex]
White=[tex] 4\frac{1}{6} [/tex]
Remember all of this is in ounces