Find which two consecutive whole numbers the square root is between. Write the letter of the exercise on the number line between these two numbers. [tex] \sqrt30 , \sqrt2 , \sqrt45 , \sqrt8 , \sqrt23 , \sqrt120 , \sqrt138 , \sqrt82 , \sqrt11 , \sqrt70 , \sqrt0.5 , \sqrt59 , 



Answer :

[tex]5=\sqrt{5^2}=\sqrt{25} < \sqrt{30}\\6=\sqrt{6^2}=\sqrt{36} > \sqrt{30}\\\\5 < \sqrt{30} < 6\\-------------\\1=\sqrt{1^2}=\sqrt1 < \sqrt2\\2=\sqrt{2^2}=\sqrt4 > \sqrt2\\\\1 < \sqrt2 < 2\\-------------\\6=\sqrt{6^2}=\sqrt{36} < \sqrt{45}\\7=\sqrt{7^2}=\sqrt{49} > \sqrt{45}\\\\6 < \sqrt{45} < 7\\-------------[/tex]

[tex]2=\sqrt{2^2}=\sqrt4 < \sqrt8\\3=\sqrt{3^2}=\sqrt9 > \sqrt8\\\\2 < \sqrt8 < 3\\-------------\\10=\sqrt{10^2}=\sqrt{100} < \sqrt{120}\\11=\sqrt{11^2}=\sqrt{121} > \sqrt{120}\\\\10 < \sqrt{120} < 11\\-------------\\12=\sqrt{12^2}=\sqrt{144} < \sqrt{138}\\13=\sqrt{13^2}=\sqrt{169} > \sqrt{138}\\\\12 < \sqrt{138} < 13\\-------------[/tex]

[tex]9=\sqrt{9^2}=\sqrt{81} < \sqrt{82}\\10=\sqrt{10^2}=\sqrt{100} > \sqrt{82}\\\\9 < \sqrt{82} < 10\\-------------\\3=\sqrt{3^3}=\sqrt9 < \sqrt{11}\\4=\sqrt{4^2}=\sqrt{16} > \sqrt{11}\\\\3 < \sqrt{11} < 4\\-------------\\8=\sqrt{8^2}=\sqrt{64} < \sqrt{70}\\9=\sqrt{9^2}=\sqrt{81} > \sqrt{70}\\\\8 < \sqrt{70} < 9\\-------------[/tex]

[tex]0=\sqrt{0^2}=\sqrt0 < \sqrt{0.5}\\1=\sqrt{1^2}=\sqrt1 > \sqrt{0.5}\\\\0 < \sqrt{0.5} < 1\\-------------\\7=\sqrt{7^2}=\sqrt{49} < \sqrt{59}\\8=\sqrt{8^2}=\sqrt{64} > \sqrt{59}\\\\7 < \sqrt{59} < 8[/tex]
View image Аноним