Answer :
1 cup = 8 fl oz.
So then we can set up a ratio of [tex]\sf \frac{fluid ~ounces}{cups} [/tex]
So we get:
[tex] \sf\frac{8~ fl. oz.}{1 ~cup} = \frac{22 ~fl. oz.}{x~ cups} [/tex]
We cross multiply and we try to solve for x, so:
[tex]\sf 8~fl.~oz. \times x ~cups = 1~cup \times 22~fl.~oz.[/tex]
[tex]\sf x~cups = \frac{22~fl.oz.}{8~fl.oz.} [/tex]
And the fl. oz. cancel out, and we are left with:
[tex]\sf x~cups = \frac{22}{8} = \frac{11}{4} = 2 \frac{3}{4} [/tex]
So 22 fl. oz. equals to 2 3/4 cups.
So then we can set up a ratio of [tex]\sf \frac{fluid ~ounces}{cups} [/tex]
So we get:
[tex] \sf\frac{8~ fl. oz.}{1 ~cup} = \frac{22 ~fl. oz.}{x~ cups} [/tex]
We cross multiply and we try to solve for x, so:
[tex]\sf 8~fl.~oz. \times x ~cups = 1~cup \times 22~fl.~oz.[/tex]
[tex]\sf x~cups = \frac{22~fl.oz.}{8~fl.oz.} [/tex]
And the fl. oz. cancel out, and we are left with:
[tex]\sf x~cups = \frac{22}{8} = \frac{11}{4} = 2 \frac{3}{4} [/tex]
So 22 fl. oz. equals to 2 3/4 cups.