Answer :
y - y₁ = m(x - x₁)
y - 4 = ¹/₂(x - 3)
y - 4 = ¹/₂x - 1¹/₂
+ 4 + 4
y = ¹/₂x + 5¹/₂
y - 4 = ¹/₂(x - 3)
y - 4 = ¹/₂x - 1¹/₂
+ 4 + 4
y = ¹/₂x + 5¹/₂
Plug the point and the slope into point-slope form and simplify to get it in slope-intercept form.
[tex]\sf~y-y_1=m(x-x_1)[/tex]
Where y1 is the y-value of the point, x1 is the x-value, and 'm' is the slope.
[tex]\sf~y-4=\dfrac{1}{2}(x-3)[/tex]
Distribute 1/2:
[tex]\sf~y-4=\dfrac{1}{2}x-1.5[/tex]
Add 4 to both sides:
[tex]\boxed{\sf~y=\dfrac{1}{2}x+2.5}[/tex]
or
[tex]\boxed{\sf~y=\dfrac{1}{2}x+2\dfrac{1}{2}}[/tex]
[tex]\sf~y-y_1=m(x-x_1)[/tex]
Where y1 is the y-value of the point, x1 is the x-value, and 'm' is the slope.
[tex]\sf~y-4=\dfrac{1}{2}(x-3)[/tex]
Distribute 1/2:
[tex]\sf~y-4=\dfrac{1}{2}x-1.5[/tex]
Add 4 to both sides:
[tex]\boxed{\sf~y=\dfrac{1}{2}x+2.5}[/tex]
or
[tex]\boxed{\sf~y=\dfrac{1}{2}x+2\dfrac{1}{2}}[/tex]