Answer :
[tex]d = \sqrt{(x_2 - x_1)^{2} + (y_2 - y_1)^{2}} [/tex]
[tex]d = \sqrt{(18 - 13)^{2} + (8 - 20)^{2}} [/tex]
[tex]d = \sqrt{(5)^{2} + (-12)^{2}} [/tex]
[tex]d = \sqrt{25 + 144} [/tex]
[tex]d = \sqrt{169} [/tex]
[tex]d = 13[/tex]
[tex]d = \sqrt{(18 - 13)^{2} + (8 - 20)^{2}} [/tex]
[tex]d = \sqrt{(5)^{2} + (-12)^{2}} [/tex]
[tex]d = \sqrt{25 + 144} [/tex]
[tex]d = \sqrt{169} [/tex]
[tex]d = 13[/tex]
Answer:
The distance between the two points is 13.
Step-by-step explanation: