Answer :
[tex]\frac{P(x)}{R(x)}|\frac{D(x)}{Q(x)}[/tex]
[tex]\frac{x^4-2x^3+3x^2-10x+3}{}|\frac{x-2}{}[/tex]
[tex]\frac{x^4-2x^3+3x^2-10x+3}{-x^4+2x^3}|\frac{x-2}{x^3}[/tex]
[tex]\frac{3x^2-10x+3}{-3x^2+6x}|\frac{x-2}{x^3+3x}[/tex]
[tex]\frac{-4x+3}{4x-8}|\frac{x-2}{x^3+3x-4}[/tex]
[tex]\frac{-5}{}|\frac{x-2}{x^3+3x-4}[/tex]
[tex]\boxed{\boxed{\frac{x^4-2x^3+3x^2-10x+3}{-5}|\frac{x-2}{x^3+3x-4}}}[/tex]
[tex]R(x)=-5[/tex]
[tex]\frac{x^4-2x^3+3x^2-10x+3}{}|\frac{x-2}{}[/tex]
[tex]\frac{x^4-2x^3+3x^2-10x+3}{-x^4+2x^3}|\frac{x-2}{x^3}[/tex]
[tex]\frac{3x^2-10x+3}{-3x^2+6x}|\frac{x-2}{x^3+3x}[/tex]
[tex]\frac{-4x+3}{4x-8}|\frac{x-2}{x^3+3x-4}[/tex]
[tex]\frac{-5}{}|\frac{x-2}{x^3+3x-4}[/tex]
[tex]\boxed{\boxed{\frac{x^4-2x^3+3x^2-10x+3}{-5}|\frac{x-2}{x^3+3x-4}}}[/tex]
[tex]R(x)=-5[/tex]
Answer:
ok
Step-by-step explanation:
\frac{P(x)}{R(x)}|\frac{D(x)}{Q(x)}
\frac{x^4-2x^3+3x^2-10x+3}{}|\frac{x-2}{}
\frac{x^4-2x^3+3x^2-10x+3}{-x^4+2x^3}|\frac{x-2}{x^3}
\frac{3x^2-10x+3}{-3x^2+6x}|\frac{x-2}{x^3+3x}
\frac{-4x+3}{4x-8}|\frac{x-2}{x^3+3x-4}
\frac{-5}{}|\frac{x-2}{x^3+3x-4}
\boxed{\boxed{\frac{x^4-2x^3+3x^2-10x+3}{-5}|\frac{x-2}{x^3+3x-4}}}
R(x)=-5