Answer :
lets use quadratic formula:
x=[tex] \frac{-1+- \sqrt{1-4*2*6} }{4}= \frac{-1+- \sqrt{-47} }{4}= \frac{-1+-i \sqrt{47} }{4} [/tex]
x₁=[tex]\frac{-1+i \sqrt{47} }{4} [/tex]
x₂=[tex]\frac{-1-i \sqrt{47} }{4} [/tex]
x=[tex] \frac{-1+- \sqrt{1-4*2*6} }{4}= \frac{-1+- \sqrt{-47} }{4}= \frac{-1+-i \sqrt{47} }{4} [/tex]
x₁=[tex]\frac{-1+i \sqrt{47} }{4} [/tex]
x₂=[tex]\frac{-1-i \sqrt{47} }{4} [/tex]
2x² + x + 6 = 0
x = -(1) +/- √((1)² - 4(2)(6))
2(2)
x = -1 +/- √(1 - 48)
4
x = -1 +/- √(-47)
4
x = -1 +/- i√(47)
4
x = -1 + i√(47) x = -1 - i√(47)
4 4
x = -0.25 + 0.25i√(47) x = -0.25 - 0.25i√(47)
x = -(1) +/- √((1)² - 4(2)(6))
2(2)
x = -1 +/- √(1 - 48)
4
x = -1 +/- √(-47)
4
x = -1 +/- i√(47)
4
x = -1 + i√(47) x = -1 - i√(47)
4 4
x = -0.25 + 0.25i√(47) x = -0.25 - 0.25i√(47)