Let a=x^2+4. Use a to find the solutions for the following equation: (x^2+4)^2+32=12x^2+48. Which one of the following are solutions for x? Select any/all that apply. -8, -2, 4, 0, 2, -4, 8

Let ax24 Use a to find the solutions for the following equation x2423212x248 Which one of the following are solutions for x Select anyall that apply 8 2 4 0 2 4 class=


Answer :

naǫ
[tex](x^2+4)^2+32=12x^2+48 \\ (x^2+4)^2+32=12(x^2+4) \ \ \ |-12(x^2+4) \\ (x^2+4)^2-12(x^2+4)+32=0 \\ \hbox{substitute a for } x^2+4: \\ a^2-12a+32=0 \\ a^2-4a-8a+32=0 \\ a(a-4)-8(a-4)=0 \\ (a-8)(a-4)=0 \\ a-8=0 \ \lor \ a-4=0 \\ a=8 \ \lor \ a=4 \\ \\ \hbox{substitute 8 and 4 for a and solve for x:} \\ a=8 \\ \Downarrow \\ 8=x^2+4 \ \ \ |-4 \\ 4=x^2 \\ x=-2 \ \lor \ x=2 \\ \\ a=4 \\ \Downarrow \\ 4=x^2+4 \ \ \ |-4 \\ 0=x^2 \\ x=0 \\ \\ \boxed{x=-2 \hbox{ or } x=0 \hbox{ or } x=2}[/tex]

The solutions for x are -2, 0, 2.

Answer:

-2,0,2

Step-by-step explanation:

The given equation is:

[tex](x^2+4)^{2}+32=12x^2+48[/tex]

⇒[tex](x^2+4)^{2}+32=12(x^2+4)[/tex]

Substituting [tex](x^2+4)=a[/tex] in the above equation, we get

⇒[tex]a^{2}+32=12a[/tex]

⇒[tex]a^2-12a+32=0[/tex]

⇒[tex]a^2-4a-8a+32=0[/tex]

⇒[tex]a(a-4)-8(a-4)=0[/tex]

⇒[tex](a-8)(a-4)=0[/tex]

⇒[tex]a=8,4[/tex]

Now,  [tex](x^2+4)=a[/tex], then substituting the value of a in this equation,

[tex]x^{2}+4=8[/tex] and [tex]x^2+4=4[/tex]

⇒[tex]x^{2}+4=8[/tex]

⇒[tex]x={\pm}2[/tex] and

⇒[tex]x^{2}+4=4[/tex]

⇒[tex]x=0[/tex]

Thus, the value of x are -2,0 and 2.