Answer :
Answer:
[tex]-1.5x-3.5y=-31.5[/tex]
Step-by-step explanation:
we know that
If two lines are perpendicular
then
the product of their slopes is equal to minus one
so
[tex]m1*m2=-1[/tex]
In this problem line AB and line PQ are perpendicular
Step 1
Find the slope of the line AB
The equation of the line AB is
[tex]-7x+3y=-21.5[/tex]
isolate the variable y
[tex]3y=7x-21.5[/tex] ------> [tex]y=(7/3)x-21.5/3[/tex]
The slope of the line AB is equal to
[tex]m1=7/3[/tex]
Step 2
Find the slope of the line PQ
remember that
[tex]m1*m2=-1[/tex]
we have
[tex]m1=7/3[/tex] ----> slope line AB
so
substitute and solve for m2
[tex](7/3)*m2=-1[/tex]
[tex]m2=-3/7[/tex]
Step 3
Find the equation of the line PQ
The equation of the line into point-slope form is equal to
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]m=-3/7[/tex]
[tex]P(7,6)[/tex]
substitute
[tex]y-6=(-3/7)(x-7)[/tex]
[tex]y=(-3/7)x+3+6[/tex]
[tex]y=(-3/7)x+9[/tex] -----> multiply by [tex]7[/tex] both sides
[tex]7y=-3x+63[/tex]
[tex]7y+3x=63[/tex] -----> divide by [tex]2[/tex] both sides
[tex]1.5x+3.5y=31.5[/tex] -----> multiply by [tex]-1[/tex] both sides
[tex]-1.5x-3.5y=-31.5[/tex]