Answer :

Solving a Single Variable Equation :

 2.3      Solve  :    3v-5 = 0 

 
Add  5  to both sides of the equation : 
 
                     3v = 5 
Divide both sides of the equation by 3:
                     v = 5/3 = 1.667 


One solution was found :                   v = 5/3 = 1.667
Making Equivalent Fractions : 1.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well. 

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respectiveMultiplier.
L. Mult. • L. Num. 5v • 3 —————————————————— = —————— L.C.M 39 R. Mult. • R. Num. 25 —————————————————— = ——          L.C.M 39Calculating the Least Common Multiple : 1.1    Find the Least Common Multiple 

      The left denominator is :       13 

      The right denominator is :       39 
        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
131113011 Product of all 
 Prime Factors 
133939

      Least Common Multiple: 
      39 v = 5/3 = 1.667 next 



rearrange = 
5*v/13-(25/39)=0 

Step by step solution:part 1: 5v 25 Simplify —— - —— 13 39

Calculating Multipliers : 1.2    Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 3

   Right_M = L.C.M / R_Deno = 1

Pulling out like terms : 1.5     Pull out like factors :

   15v - 25  =   5 • (3v - 5) 
Equation at the end of step  1  : 5 • (3v - 5) ———————————— = 0 39
Step  2  : 5•(3v-5) Solve ———————— = 0 39