Use distance formula; [tex]d = \sqrt{(x_1-x_2)^2 + (y_1 - y_2)^2}[/tex]
You have [tex]x_1 = -4[/tex], [tex]x_2 = 10[/tex], [tex]y_1 = 6[/tex], and lastly [tex]y_2 = -5[/tex]
Plug in these values;
[tex]d = \sqrt{(-4-10)^2 + (6 - (-5))^2}[/tex]
[tex]d = \sqrt{(-14)^2 + (6 +5))^2}[/tex]
[tex]d = \sqrt{14^2 + 11^2}[/tex]
[tex]d = \sqrt{317}[/tex]
[tex]d=17.8044938\ldots[/tex]
[tex]d \approx \boxed{17.8}[/tex]