Answer :
[tex]\sf~V=\dfrac{1}{3}\pi~r^2h[/tex]
Plug in what we know:
[tex]\sf~V=\dfrac{1}{3}(3.14)(6)^2(9)[/tex]
Simplify exponent:
[tex]\sf~V=\dfrac{1}{3}(3.14)(36)(9)[/tex]
Multiply:
[tex]\sf~V=\boxed{\sf339.12}[/tex]
Plug in what we know:
[tex]\sf~V=\dfrac{1}{3}(3.14)(6)^2(9)[/tex]
Simplify exponent:
[tex]\sf~V=\dfrac{1}{3}(3.14)(36)(9)[/tex]
Multiply:
[tex]\sf~V=\boxed{\sf339.12}[/tex]
Answer:
339.1 ft³
Step-by-step explanation:
The formula for the volume of a cone is
V = 1/3πr²h
Since the diameter of the statue is 12, this makes the radius 12/2 = 6.
Using 6 for r, 3.14 for pi, and 9 for h, we have
V = 1/3(3.14)(6²)(9) = 339.12 ≈ 339.1 ft³