Answer :
[tex]9-7x=(4x-3)^2+5 \\
9-7x=16x^2-24x+9+5 \\
9-7x=16x^2-24x+14 \\
0=16x^2-24x+14-9+7x \\
0=16x^2-17x+5 \\
\boxed{16x^2-17x+5=0} \\
\hbox{answer D}[/tex]
Answer:
Option D - [tex]16x^2-17x + 5=0[/tex]
Step-by-step explanation:
Given : Expression [tex]9 - 7x = (4x - 3)^2 + 5[/tex]
To find : Which shows the equation below written in standard form?
Solution :
Step 1 - Write the expression
[tex]9 - 7x = (4x - 3)^2 + 5[/tex]
Step 2 - Solve the square term
[tex]9 - 7x = 16x^2+9-24x + 5[/tex]
Step 3 - Place like term together
[tex]16x^2-24x+7x + 5+9-9=0[/tex]
[tex]16x^2-17x + 5=0[/tex]
Therefore, Option D is correct.
The standard form of the equation is [tex]16x^2-17x + 5=0[/tex]