Which shows the equation below written in standard form?

9 - 7x = (4x - 3)2 + 5

A. 16x2 - 31x - 5 = 0
B. 16x2 - 31x + 5 = 0
C. 16x2 - 17x - 5 = 0
D. 16x2 - 17x + 5 = 0



Answer :

naǫ
[tex]9-7x=(4x-3)^2+5 \\ 9-7x=16x^2-24x+9+5 \\ 9-7x=16x^2-24x+14 \\ 0=16x^2-24x+14-9+7x \\ 0=16x^2-17x+5 \\ \boxed{16x^2-17x+5=0} \\ \hbox{answer D}[/tex]

Answer:

Option D - [tex]16x^2-17x + 5=0[/tex]

Step-by-step explanation:

Given : Expression [tex]9 - 7x = (4x - 3)^2 + 5[/tex]

To find : Which shows the equation below written in standard form?

Solution :

Step 1 - Write the expression

[tex]9 - 7x = (4x - 3)^2 + 5[/tex]

Step 2 - Solve the square term

[tex]9 - 7x = 16x^2+9-24x + 5[/tex]

Step 3 - Place like term together

[tex]16x^2-24x+7x + 5+9-9=0[/tex]

[tex]16x^2-17x + 5=0[/tex]

Therefore, Option D is correct.

The standard form of the equation is [tex]16x^2-17x + 5=0[/tex]