Answer :
The length of three sides in a right triangle has the rule of hypotenuse^2=leg one ^2 + leg two ^2. So the square of the length of hypotenuse equals to 9^2+40^2. So the length is 41 cm.
Answer:
41cm
Step-by-step explanation:
Let the given right triangle be ABC, then ∠B=90° and AB=40cm and BC=9cm.
Using the pythagoras theorem, we get
[tex](AC)^{2}=(AB)^{2}+(CB)^{2}[/tex]
[tex](AC)^2=(9)^2+(40)^2[/tex]
[tex](AC)^2=\sqrt{81+1600}[/tex]
[tex](AC)^2=\sqrt{1681}[/tex]
[tex]AC=41cm[/tex]
Therefore, the value of the hypotenuse of the given right triangle will be 41 cm.