So,
All we have to do is subtract the smaller cone's volume from the larger cone's volume.
First, we will use the formula for the volume of a cone to find the volume of the larger cone.
[tex]V_{1} = \frac{1}{3}\pi r^2h[/tex]
Substitute.
[tex]V_{1} = \frac{1}{3}(3.14)(6)^2(18)[/tex]
Simplify exponents.
[tex]V_{1} = \frac{1}{3}(3.14)(36)(18)[/tex]
Multiply. We will do the fraction last.
[tex]V_{1} = \frac{1}{3}(113.04)(18)[/tex]
[tex]V_{1} = \frac{1}{3}(2034.72)[/tex]
[tex]V_{1} = 678.24\ cm^3[/tex]
Now, use the same formula and procedure to find the volume of the smaller cone.
[tex]V_{2} = \frac{1}{3}\pi r^2h[/tex]
[tex]V_{2} = \frac{1}{3}(3.14)(6)^2(6)[/tex]
Exponents first, and then multiplication, leaving the fraction last.
[tex]V_{2} = \frac{1}{3}(3.14)(36)(6)[/tex]
[tex]V_{2} = \frac{1}{3}(113.04)(6)[/tex]
[tex]V_{2} = \frac{1}{3}(678.24)[/tex]
[tex]V_{2} = 226.08\ cm^3[/tex]
Now, use this formula to find the answer:
[tex]V_{2} - V_{1} = Ans[/tex]
And substitute the now known values.
[tex]678.24 - 226.08 = Ans[/tex]
[tex]452.16\ cm^3 = Ans[/tex]
Remi must put 452.16 cubic centimeters of water into the larger container.