Answer :

naǫ
[tex](-15,9) \\ x_1=-15 \\ y_1=9 \\ \\ (-4,11) \\ x_2=-4 \\ y_2=11 \\ \\ \hbox{the length:} \\ l=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}=\sqrt{(-4+15)^2+(11-9)^2}=\\ =\sqrt{11^2+2^2}=\sqrt{121+4}=\sqrt{125}=\sqrt{25 \times 5}=5\sqrt{5} \\ \\ \hbox{the midpoint:} (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}) \\ \frac{x_1+x_2}{2}=\frac{-15-4}{2}=\frac{-19}{2}=-9.5 \\ \frac{y_1+y_2}{2}=\frac{9+11}{2}=\frac{20}{2}=10 \\ (-9.5,10)[/tex]

The length of the segment is 5√5, the midpoint of the segment is (-9.5,10).

Answer:B is finna be yo answer


Step-by-step explanation: took e2020 test