Answer :
x³ - 2x² + 10x + 136 = 0
x³ - 6x² + 4x² + 34x - 24x + 136 = 0
x³ - 6x² + 34x + 4x² - 24x + 136 = 0
x(x²) - x(6x) + x(34) + 4(x²) - 4(6x) + 4(34) = 0
x(x² - 6x + 34) + 4(x² - 6x + 34) = 0
(x + 4)(x² - 6x + 34) = 0
x + 4 = 0 U x² - 6x + 34 = 0
- 4 - 4 x = -(-6) +/- √((-6)² - 4(1)(34))
x = -4 2(1)
x = 6 +/- √(36 - 136)
2
x = 6 +/- √(-100)
2
x = 6 +/- 10i
2
x = 3 + 5i
x = 3 + 5i U x = 3 - 5i
The solution set is equal to {-4, 3 + 5i}.
x³ - 6x² + 4x² + 34x - 24x + 136 = 0
x³ - 6x² + 34x + 4x² - 24x + 136 = 0
x(x²) - x(6x) + x(34) + 4(x²) - 4(6x) + 4(34) = 0
x(x² - 6x + 34) + 4(x² - 6x + 34) = 0
(x + 4)(x² - 6x + 34) = 0
x + 4 = 0 U x² - 6x + 34 = 0
- 4 - 4 x = -(-6) +/- √((-6)² - 4(1)(34))
x = -4 2(1)
x = 6 +/- √(36 - 136)
2
x = 6 +/- √(-100)
2
x = 6 +/- 10i
2
x = 3 + 5i
x = 3 + 5i U x = 3 - 5i
The solution set is equal to {-4, 3 + 5i}.