Answer :
We have to use the distance formula.
[tex]\sf~d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
(13, 20), (18, 8)
x1 y1 x2 y2
Plug in what we know:
[tex]\sf~d=\sqrt{(18-13)^2+(8-20)^2}[/tex]
Subtract:
[tex]\sf~d=\sqrt{(5)^2+(-12)^2}[/tex]
Simplify exponents:
[tex]\sf~d=\sqrt{25+144}[/tex]
Add:
[tex]\sf~d=\sqrt{169}[/tex]
Find the square root:
[tex]\sf~d=\boxed{\sf13}[/tex]
[tex]\sf~d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
(13, 20), (18, 8)
x1 y1 x2 y2
Plug in what we know:
[tex]\sf~d=\sqrt{(18-13)^2+(8-20)^2}[/tex]
Subtract:
[tex]\sf~d=\sqrt{(5)^2+(-12)^2}[/tex]
Simplify exponents:
[tex]\sf~d=\sqrt{25+144}[/tex]
Add:
[tex]\sf~d=\sqrt{169}[/tex]
Find the square root:
[tex]\sf~d=\boxed{\sf13}[/tex]