Lauren’s age can be represented by the expression 10m2. Kristen’s age can be represented by the expression 2m5.

What is the ratio of Lauren’s age to Kristen’s age?



Answer :

Given: 
Lauren's age =  [tex]10 m^{2} [/tex]
Kristen's age = [tex]2 m^{5} [/tex]

ratio of Lauren's age to Kristen's age = [tex] \frac{10 m^{2} }{2 m^{5} } [/tex]
 
                                                      = [tex] \frac{2 * 5* m^{2} }{2* m^{5} } [/tex]
                                            
                                                     = [tex] \frac{5 }{ m^{5-2} } [/tex]
          
                                                      = [tex] \frac{5 }{ m^{3} } [/tex]

So, the ratio is 5  :  m³


The ratio of Lauren's Age to Kristen's Age = [tex]\rm5:m^3[/tex]

Ratio of two numbers is a quantitative relationship between two numbers showing that  how one number is increasing or decreasing with respect to other number.

If a and b are two numbers then the their ratio r is represented by the equation  (1)

[tex]r = a:b......(1)[/tex]

Lauren' s Age = [tex]10m^2[/tex]

Kristien's Age = [tex]2m^5[/tex]

For Finding out the ratio of two numbers we simply divide them.

Let x be the ratio of Lauren's age to Kristen's age, = x  = [tex]\rm10m^2[/tex]/[tex]\rm2m^5[/tex].....(2)

On simplifying equation (2) we get

x = [tex]\rm5/m^3[/tex]

So the ratio of Lauren's Age to Kristen's Age = [tex]\rm5:m^3[/tex]

For more information please refer to the link below

https://brainly.com/question/21379025