Answered

Using the quadratic formula to solve 5x = 6x2 – 3, what are the values of x?



Answer :

       5x = 6x² - 3
5x - 5x = 6x² - 5x - 3
         0 = 6x² - 5x - 3
         x = -(-5) ± √((-5)² - 4(6)(-3))
                              2(6)
         x = 5 ± √(25 + 72)
                        12
         x = 5 ± √(97)
                   12
          x = 5 + √(97)    U    x = 5 - √(97)
                     12                          12
[tex]the\ values\ of\ x\ is\ \frac{5 +/- \sqrt{97}}{12}.[/tex]

The value of x are;  x = 5 + √(97)/12  and x = 5 - √(97)/12.

What is a quadratic equation?

A quadratic equation is the second-order degree algebraic expression in a variable.

The standard form of this expression is  ax² + bx + c = 0 where a. b are coefficients and x is the variable and c is a constant.

Given;

 5x = 6x² - 3

Subtract 5x on both sides

5x - 5x = 6x² - 5x - 3

0 = 6x² - 5x - 3

       

x = -(-5) ± √((-5)² - 4(6)(-3)) / 2(6)

                           

x = 5 ± √(25 + 72)/ 12

x = 5 ± √(97)/ 12

               

The value of x are;

x = 5 + √(97)/12      

x = 5 - √(97)/12

                   

Learn more about quadratic equations;

brainly.com/question/13197897

#SPJ5