Answer:
a) [tex]7\sqrt{2}[/tex], b and c)[tex]\sqrt{65}[/tex]
Step-by-step explanation:
The length of line joining two coordinates (x₁,y₁) and (x₂,y₂) is
[tex]\sqrt{(y_{2}-y_{1})^2+(x_{2}-x_{1})^2 }[/tex]
Using this formula for part a,
[tex]AB=\sqrt{(3-(-4))^2+(3-(-4))^2} \\\\AB=\sqrt{2(49)} \\\\AB=7\sqrt{2}[/tex]
Using the formula for part b,
[tex]AB=\sqrt{(-4-3)^2+(2-(-2))^2} \\\\AB=\sqrt{65}[/tex]
Using the formula for part c,
[tex]AB=\sqrt{(1-0)^2+(4-(-4))^2} \\\\AB=\sqrt{65}[/tex]