Answer :
Answer:
To find the volume [tex]V[/tex] of the paper towel roll, we use the formula for the volume of a cylinder:
V= π[tex]r^2[/tex]ℎ
where r is the radius of the cylinder and ℎ h is the height of the cylinder.
Given:
[tex]r[/tex] = 4 cm (the radius)
ℎ = 28 cm (the height)
π = 3.14
Substituting these values into the formula:
[tex]V[/tex] = 3.14 × [tex](4)^2[/tex] × 28
[tex]V[/tex] =3.14×16×28
[tex]V[/tex] = 1409.28 cubic centimeters
Therefore, the volume of the paper towel roll is approximately 1409.3 cubic centimeters when rounded to the nearest tenth.
Hope this helped :)
Answer:
351.7 cm³
Step-by-step explanation:
To find the volume of the paper towel roll given that it is shaped like a cylinder, we can use the formula for the volume of a cylinder:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Volume of a Cylinder}}\\\\V=\pi r^2 h\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$V$ is the volume.}\\\phantom{ww}\bullet\;\textsf{$r$ is the radius of the circular base.}\\\phantom{ww}\bullet\;\textsf{$h$ is the height.}\end{array}}[/tex]
Given that the width (diameter) of the paper towel roll is 4 cm, the radius is half this, so r = 2 cm. Therefore:
- π = 3.14
- r = 2 cm
- h = 28 cm
Substitute the values into the volume formula:
[tex]V=3.14 \cdot 2^2\cdot 28\\\\V=3.14 \cdot 4\cdot 28\\\\V=12.56\cdot 28\\\\V=351.68\\\\V=351.7\; \sf cm^3 \;(nearest\;tenth)[/tex]
Therefore, the volume of the paper towel roll to the nearest tenth is:
[tex]\Large\boxed{\boxed{351.7\; \sf cm^3}}[/tex]