Answer :

Answer:

To find the volume [tex]V[/tex] of the paper towel roll, we use the formula for the volume of a cylinder:

V= π[tex]r^2[/tex]ℎ

where r is the radius of the cylinder and ℎ h is the height of the cylinder.

Given:

[tex]r[/tex] = 4 cm (the radius)

ℎ = 28 cm (the height)

π = 3.14

Substituting these values into the formula:

[tex]V[/tex] = 3.14 × [tex](4)^2[/tex] × 28

[tex]V[/tex] =3.14×16×28

[tex]V[/tex] = 1409.28 cubic centimeters

Therefore, the volume of the paper towel roll is approximately 1409.3 cubic centimeters when rounded to the nearest tenth.

Hope this helped :)

Answer:

351.7 cm³

Step-by-step explanation:

To find the volume of the paper towel roll given that it is shaped like a cylinder, we can use the formula for the volume of a cylinder:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Volume of a Cylinder}}\\\\V=\pi r^2 h\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$V$ is the volume.}\\\phantom{ww}\bullet\;\textsf{$r$ is the radius of the circular base.}\\\phantom{ww}\bullet\;\textsf{$h$ is the height.}\end{array}}[/tex]

Given that the width (diameter) of the paper towel roll is 4 cm, the radius is half this, so r = 2 cm. Therefore:

  • π = 3.14
  • r = 2 cm
  • h = 28 cm

Substitute the values into the volume formula:

[tex]V=3.14 \cdot 2^2\cdot 28\\\\V=3.14 \cdot 4\cdot 28\\\\V=12.56\cdot 28\\\\V=351.68\\\\V=351.7\; \sf cm^3 \;(nearest\;tenth)[/tex]

Therefore, the volume of the paper towel roll to the nearest tenth is:

[tex]\Large\boxed{\boxed{351.7\; \sf cm^3}}[/tex]