Answered

100 points!
Angle θ intersects the unit circle at point (-0.5090, -0.8607). What is the value of tan(θ)?

A. 1.6910

B. 0.5914

C. -0.5090

D. -0.8607



Answer :

Answer:

[tex]\tan(\theta) \approx 1.6910[/tex]

Step-by-step explanation:

The trigonometric ratio tangent is defined as:

[tex]\rm \tan(\theta) = \dfrac{opposite}{adjacent}[/tex]

In the context of a right triangle formed by vertices on the circumference and at the center of the unit circle, this ratio becomes:

[tex]\tan(\theta)=\dfrac{y}{x}[/tex]

where:

  • [tex](x,y)[/tex] is the triangle's vertex on the circumference.

Plugging in the given x- and y-coordinates, we get:

[tex]\tan(\theta)=\dfrac{-0.8607}{0.5090}[/tex]

[tex]\boxed{\tan(\theta) \approx 1.6910}[/tex]

View image Intriguing456