50 POINTS NEED HELP ASAP

Round to nearest hundredth 0.00
Apothem of the polygon=__m
Perimeter=__M

Use the perimeter and apothem you
calculated
Area of the polygon=__m²

50 POINTS NEED HELP ASAP Round to nearest hundredth 000 Apothem of the polygonm PerimeterM Use the perimeter and apothem you calculated Area of the polygonm class=


Answer :

Answer :

  • apothem = 24.25 m
  • perimeter = 168 m
  • area = 2,036.89 m^2

Explanation :

apothem of a regular hex is given by,

  • apothem = (√3/2)*s

plug in,

  • apothem = (√3/2)*28 m
  • apothem = 14 √3 m
  • apothem = 24.25 m ( to the nearest hundredth )

perimeter is the sum of all the sides of a polygon

  • perimeter = 6*28 m
  • perimeter = 168 m

thus,

the area of the hex would be

  • 1/2*apothem*perimeter

1/2*14√3m*168m

  • 1176√3 m^2
  • 2036.89 m^2 .
msm555

Answer:

[tex]\sf Apothem(a) = 24.25 \, \textsf{m}[/tex]

[tex]\sf Perimeter (P)168 \, \textsf{m}[/tex]

[tex]\sf Area(A) = 2036.89 \, \textsf{m}^2[/tex]

Step-by-step explanation:

To calculate the apothem, perimeter, and area of a regular polygon with side length [tex]\sf 28 \, \textsf{m}[/tex] and [tex]\sf 6[/tex] sides, we can use the following formulas:

Apothem ([tex]\sf a[/tex]) of a regular polygon:

[tex]\large\boxed{\boxed{\sf a = \dfrac{s}{2 \times \tan\left(\dfrac{\pi}{n}\right)}}} [/tex]

Where:

  • [tex]\sf s[/tex] is the length of one side
  • [tex]\sf n[/tex] is the number of sides

Perimeter ([tex]\sf P[/tex]) of a regular polygon:

[tex]\large\boxed{\boxed{\sf P = n \times s}} [/tex]

Where:

  • [tex]\sf n[/tex] is the number of sides
  • [tex]\sf s[/tex] is the length of one side

Area ([tex]\sf A[/tex]) of a regular polygon:

[tex]\large\boxed{\boxed{\sf A = \dfrac{1}{2} \times a \times P }}[/tex]

Where:

  • [tex]\sf a[/tex] is the apothem
  • [tex]\sf P[/tex] is the perimeter

Given:

  • Side length ([tex]\sf s[/tex]) = [tex]\sf 28 \, \textsf{m}[/tex]
  • Number of sides ([tex]\sf n[/tex]) = [tex]\sf 6[/tex]

Let's calculate:

Apothem ([tex]\sf a[/tex]):

[tex]\sf a = \dfrac{28}{2 \times \tan(\dfrac{\pi}{6})} [/tex]

[tex]\sf a = \dfrac{28}{2 \times \tan(30^\circ)} [/tex]

[tex]\sf a = \dfrac{28}{2 \times 0.5773502691896} [/tex]

[tex]\sf a = \dfrac{28 }{2 \times \sqrt{3}} [/tex]

[tex]\sf a = \dfrac{28}{1.1547005383792} [/tex]

[tex]\sf a \approx 24.248711305964 [/tex]

[tex]\sf a \approx 24.25 \, \textsf{m (in nearest hundredth)} [/tex]

Perimeter ([tex]\sf P[/tex]):

[tex]\sf P = 6 \times 28 [/tex]

[tex]\sf P = 168 \, \textsf{m} [/tex]

Area ([tex]\sf A[/tex]):

[tex]\sf A = \dfrac{1}{2} \times 24.248711305964 \times 168 [/tex]

[tex]\sf A = \dfrac{1}{2} \times 48.497 \times 168 [/tex]

[tex]\sf A = 2036.8917497009 [/tex]

[tex]\sf A \approx 2036.89 \, \textsf{m$^2$ (in nearest hundredth)}[/tex]

In summary:

[tex]\sf Apothem(a) = 24.25 \, \textsf{m}[/tex]

[tex]\sf Perimeter (P)168 \, \textsf{m}[/tex]

[tex]\sf Area(A) = 2036.89 \, \textsf{m}^2[/tex]

View image msm555