Answer :

Answer:

[tex]\large{\boxed{1220.34g}}[/tex]

Explanation:

  • Cobalt Chloride = [tex]CoCl_2[/tex]
  • Mass of Cobalt Chloride = [tex]129.84 g/mol[/tex]
  • Avogadro's Number = [tex]6.022 \times 10^{23}[/tex]
  • Mass of [tex]5.66 \times 10^{24}[/tex] molecules of [tex]CoCl_2[/tex]

This consists of a simple conversion from molecules/particles to molar mass, for that, you will need to solve the question. Remember that one molecule is equivalent to [tex]6.022 \times 10^{23}[/tex] mols.

Follow a rule of association, if one mole of a molecule is equal to [tex]6.022 \times 10^{23}[/tex], with that in mind, we find out how many mols there is [tex]5.66 \times 10^{24}[/tex] molecules:

[tex]1 \text{ mole} \rightarrow 6.022 \times 10^{23} \text{ molecules}\\x \text{ moles} \rightarrow 5.66 \times 10^{24} \text{ molecules}[/tex]

[tex]6.022 \times 10^{23}x = 5.66 \times 10^{24}\\x = \frac{5.66 \times 10^{24}}{6.022 \times 10^{23}}\\x = \boxed{9.39 \text{ moles}}[/tex]

With that, we found out that [tex]5.66 \times 10^{24}[/tex] molecules are equivalent to [tex]9.39[/tex] moles, and with that, we can work with mass. We know that 1 mol of [tex]CoCl_2[/tex] is equal to [tex]129.84 g/mol[/tex], therefore:

[tex]1 \text{ mol} \rightarrow 129.84 g/mol\\9.39 \text{ moles} \rightarrow x\\x = 1220.34 g[/tex]