Answer :

(PLEASE MAKE THIS COMMENT THE BRANIEST)

ANSWER:

1. Create a table with the top row listing the angles such as 0°, 30°, 45°, 60°, 90°, and write all trigonometric functions in the first column such as sin, cos, tan, cosec, sec, cot.

2. Determine the value of sin

To determine the values of sin, divide 0, 1, 2, 3, 4 by 4 under the root, respectively. See the example below.

To determine the value of sin 0°

3. Determine the value of cos

The cos-value is the opposite angle of the sin angle. To determine the value of cos divide by 4 in the opposite sequence of sin. For example, divide 4 by 4 under the root to get the value of cos 0°. See the example below.

To determine the value of cos 0°

4. Determine the value of tan

The tan is equal to sin divided by cos. tan = sin/cos. To determine the value of tan at 0° divide the value of sin at 0° by the value of cos at 0°. See the example below.

tan 0°= 0/1 = 0

5. Determine the value of cot

The value of cot is equal to the reciprocal of tan. The value of cot at 0° will obtain by dividing 1 by the value of tan at 0°. So the value will be:

cot 0° = 1/0 = Infinite or Not Defined

6. Determine the value of cosec

The value of cosec at 0° is the reciprocal of sin at 0°.

cosec 0°= 1/0 = Infinite or Not Defined

7. Determine the value of sec

The value of sec can be determined by all reciprocal values of cos. The value of sec on 0° is the opposite of cos on 0°. So the value will be:
sec 0° = 1/1 = 1


For more information/ charts go too https://byjus.com/maths/trigonometry-table/

[tex]\huge\ \star\;{\underline{\underline{\pmb{\mathfrak{Answer:}}}}}[/tex]

[tex]\boxed{\boxed{\begin{array}{| c | c | c | c | c | c |}\sf \: \angle A & \sf {0}^{°} & \sf {30}^{°} & \sf {45}^{°} &\sf {60}^{°} & \sf {90}^{°} \\ \\ \bf \sin(A) & \sf 0 & \sf\frac{1}{2} & \sf\frac{1}{ \sqrt{2} } & \sf \frac{ \sqrt{3} }{2} & 1 \\ \\ \sf\cos(A) &\sf 1 & \sf \frac{ \sqrt{3} }{2} & \bf \frac{1 }{ \sqrt{2} } & \bf \frac{1}{2} & \sf0 \: \\ \\ \sf\tan(A ) & \sf0& \sf \frac{1}{ \sqrt{3} } & \sf 1& \sf \sqrt{3} & \sf \infty \\ \\ \sf \cot(A) & \sf \infty & \sf \sqrt{3} & \sf1& \sf \frac{1}{ \sqrt{3} } & \sf0 \\ \\ \sf \sec(A) & \sf1& \sf \frac{2}{ \sqrt{3} } & \sf \sqrt{2} & \sf2& \sf \infty \\ \\ \sf\cosec(A) & \sf \infty & \sf2& \sf \sqrt{2} & \sf \frac{2}{ \sqrt{3} } & \sf1 \end{array}}} [/tex]

[tex]\boxed{\begin{minipage}{5 cm}\ttFundamental Trigonometric Identities \\ \\$ \bf\sin^2\theta + \bf\cos^2\theta=1 \\ \\1+\sf\tan^2\theta = \sf\sec^2\theta \\ \\ \tt1+\tt\cot^2\theta = \tt{cosec}^2 \, \theta$\end{minipage}}[/tex]