Answer :

Answer:

Step-by-step explaTo simplify the expression \(-20xy ÷ (-15xy) × (-12x^2y)\), let's break it down step by step:

1. First, let's simplify the division:

\[ \frac{-20xy}{-15xy} = \frac{-20}{-15} \times \frac{x}{x} \times \frac{y}{y} \]

When we cancel out \( x \) and \( y \), we get:

\[ \frac{4}{3} \]

2. Next, let's multiply the result by \( -12x^2y \):

\[ \frac{4}{3} \times (-12x^2y) \]

When we multiply, we get:

\[ \frac{4}{3} \times (-12) \times x^2 \times y \]

This simplifies to:

\[ -\frac{16}{1} \times x^2 \times y \]

Or simply:

\[ -16x^2y \]

So, the simplified expression is \( -16x^2y \).