Answer:
Step-by-step explaTo simplify the expression \(-20xy ÷ (-15xy) × (-12x^2y)\), let's break it down step by step:
1. First, let's simplify the division:
\[ \frac{-20xy}{-15xy} = \frac{-20}{-15} \times \frac{x}{x} \times \frac{y}{y} \]
When we cancel out \( x \) and \( y \), we get:
\[ \frac{4}{3} \]
2. Next, let's multiply the result by \( -12x^2y \):
\[ \frac{4}{3} \times (-12x^2y) \]
When we multiply, we get:
\[ \frac{4}{3} \times (-12) \times x^2 \times y \]
This simplifies to:
\[ -\frac{16}{1} \times x^2 \times y \]
Or simply:
\[ -16x^2y \]
So, the simplified expression is \( -16x^2y \).