Answer:
(2x + 3y) (2x - 3y)
Step-by-step explanation:
Recall the difference of square formula: [tex]a^2-b^2=(a+b)(a-b)[/tex].
(a + b) and (a - b) are our dimensions, or side lengths!
In this case,
[tex]a^2=4x^2[/tex]
[tex]b^2= 9y^2[/tex]
Using that formula, just square root a and b to find the dimensions!
[tex]\sqrt{a^2} =\sqrt{4x^2} =2x[/tex] ([tex]x^2[/tex] is just x*x, like how 4 is 2*2)
[tex]\sqrt{b^2}=\sqrt{9y^2} =3y[/tex]
So,
(a + b) = (2x + 3y)
(a - b) = (2x - 3y)