Halla las raíces de las siguientes funciones cuadráticas utilizando la fórmula general o el método de factorización, según convenga. f(x)=x²-9 f(x)=x²-10x+24 f(x)=-3x² - 18x f(x)=8x² + 20 f(x)=5x²-15 f(x)=10x²-30x+1 f(x)=x² + 3x f(x)=2x²-8x-5​



Answer :

Sure, here are the roots of the given quadratic functions using the general formula or the factorization method, as appropriate:

Function 1:

f(x) = x² - 9

General Formula:

The general formula for the roots of a quadratic equation ax² + bx + c = 0 is:

x = (-b ± √(b² - 4ac)) / 2a

In this case, a = 1, b = 0, and c = -9. Substituting these values into the formula, we get:

x = (0 ± √(0² - 4 * 1 * -9)) / 2 * 1

x = (0 ± √36) / 2

x = (0 ± 6) / 2

Therefore, the roots of f(x) = x² - 9 are:

x1 = 3

x2 = -3

Factorization Method:

The quadratic equation can be factored as:

f(x) = (x + 3)(x - 3)

Therefore, the roots of f(x) = x² - 9 are:

x1 = -3

x2 = 3

Function 2:

f(x) = x² - 10x + 24

General Formula:

Using the general formula, we get:

x = (10 ± √(10² - 4 * 1 * 24)) / 2 * 1

x = (10 ± √(-64)) / 2

Since the square root of a negative number is an imaginary number, there are no real roots for this quadratic equation.

Factorization Method:

The quadratic equation can be factored as:

f(x) = (x - 4)(x - 6)

Therefore, the roots of f(x) = x² - 10x + 24 are:

x1 = 4

x2 = 6

Function 3:

f(x) = -3x² - 18x

General Formula:

Using the general formula, we get:

x = (18 ± √(18² - 4 * -3 * 0)) / 2 * -3

x = (18 ± √324) / -6

x = (18 ± 18) / -6

x = 0 or x = -3

Factorization Method:

The quadratic equation can be factored as:

f(x) = -3x(x + 6)

Therefore, the roots of f(x) = -3x² - 18x are:

x1 = 0

x2 = -6

Function 4:

f(x) = 8x² + 20

General Formula:

Using the general formula, we get:

x = (-20 ± √(20² - 4 * 8 * 20)) / 2 * 8

x = (-20 ± √(-640)) / 16

Since the square root of a negative number is an imaginary number, there are no real roots for this quadratic equation.

Factorization Method:

The quadratic equation cannot be factored using integer coefficients.

Function 5:

f(x) = 5x² - 15

General Formula:

Using the general formula, we get:

x = (15 ± √(15² - 4 * 5 * -15)) / 2 * 5

x = (15 ± √300) / 10

x = (15 ± 6√5) / 10

x = (3 ± 12√5) / 10

Therefore, the roots of f(x) = 5x² - 15 are:

x1 = (3 - 12√5) / 10

x2 = (3 + 12√5) / 10

Function 6:

f(x) = 10x² - 30x + 1

General Formula:

Using the general formula, we get:

x = (30 ± √(30² - 4 * 10 * 1)) / 2 * 10

x = (30 ± √840) / 20

x = (30 ± 6√14) / 20

x = (3 ± 3√14)