Answer :

Answer:  [tex]\frac{14\text{x}+20}{105 \text{x}^2}\\\\[/tex]

Work Shown

[tex]\frac{2}{15 \text{x}}+\frac{4}{21 \text{x}^2}\\\\=\frac{7 \text{x}*2}{7 \text{x}*15 \text{x}}+\frac{5*4}{5*21 \text{x}^2}\\\\=\frac{14\text{x}}{105 \text{x}^2}+\frac{20}{105 \text{x}^2}\\\\=\frac{14\text{x}+20}{105 \text{x}^2}\\\\[/tex]

Therefore,

[tex]\frac{2}{15 \text{x}}+\frac{4}{21 \text{x}^2}=\frac{14\text{x}+20}{105 \text{x}^2}[/tex]

is an identity where [tex]\text{x} \ne 0[/tex]

In other words, it's a true equation for any nonzero value of x.

I used GeoGebra to confirm the answer.