b.
4. En una industria de zapatos el costo total C(x) para producir un número determinado x de
zapatos se calcula mediante la función
C(x) = 75x + 20000.
a. Determina el costo de elaborar 5 000 zapatos.
b. ¿Cuál es el costo de cada zapato?
c. ¿Cuál es el gasto fijo o costo fijo de esa industria?
5. La tabla de datos lineales, se refiere a la antigüedad en años y el precio de venta en miles
de dólares, de tres máquinas excavadoras.



Answer :

Let's break down the questions one by one: a. To determine the cost of producing 5,000 shoes, we can use the given cost function C(x) = 75x + 20,000. Substitute x = 5,000 into the function: C(5,000) = 75(5,000) + 20,000 C(5,000) = 375,000 + 20,000 C(5,000) = 395,000 Therefore, the cost of producing 5,000 shoes is $395,000. b. The cost per shoe can be found by dividing the total cost of producing 5,000 shoes by the number of shoes produced: Cost per shoe = Total cost / Number of shoes Cost per shoe = $395,000 / 5,000 Cost per shoe = $79 Hence, the cost of each shoe is $79. c. The fixed cost or overhead cost of the industry is represented by the constant term in the cost function. In this case, the fixed cost is $20,000. This cost remains constant regardless of the number of shoes produced. Fixed costs include expenses like rent, insurance, and salaries that do not vary with production levels. I hope this breakdown helps you understand how to calculate the cost of producing a specific number of shoes, the cost per shoe, and the fixed cost associated with the industry. If you have any further questions or need clarification, feel free to ask!