Answer :

Answer:

→ 12

Step-by-step explanation:

Given Expression :

  • [tex] \sf{ \dfrac{2x {}^{2} - 5 }{x} + 9}[/tex]

We have to find :

  • Value of Expression when x = -1

Solution :

[tex] \sf{ \: \: \: \: \: \hookrightarrow \: \: \: \: \: \: \: \dfrac{2x {}^{2} - 5 }{x} + 9}[/tex]

Plugging in value lf x as -1 :

[tex] \sf{ \: \: \: \: \: \hookrightarrow \: \: \: \: \: \: \: \dfrac{2( - 1) {}^{2} - 5 }{ (- 1)} + 9}[/tex]

Simplifying :

[tex] \sf{ \: \: \: \: \: \hookrightarrow \: \: \: \: \: \: \: \dfrac{2( 1) - 5 }{ (- 1)} + 9}[/tex]

[tex] \sf{ \: \: \: \: \: \hookrightarrow \: \: \: \: \: \: \: \dfrac{2- 5 }{ (- 1)} + 9}[/tex]

[tex] \sf{ \: \: \: \: \: \hookrightarrow \: \: \: \: \: \: \: \dfrac{ \cancel{ -} 3 }{ \cancel{ - }1} + 9}[/tex]

[tex] \sf{ \: \: \: \: \: \hookrightarrow \: \: \: \: \: \: \: 3 + 9}[/tex]

[tex] \sf{ \: \: \: \: \: \hookrightarrow \: \: \: \: \: \: \: \underline{ \boxed{\bold{12}}}} \: \: \: \bigstar[/tex]

>>> Therefore, 12 is the answer.