Answer:
x = 8 and x ≈ 12.1
Step-by-step explanation:
Using Pythagoras' identity in the right triangles
a² + b² = c² ( c is the hypotenuse and a, b the legs )
in the first question
a = x , b = 6 , c = 10 , then
x² + 6² = 10²
x² + 36 = 100 ( subtract 36 from both sides )
x² = 64 ( take square root of both sides )
[tex]\sqrt{x^2}[/tex] = [tex]\sqrt{64}[/tex]
x = 8
---------------------------------------------------------------
In the second question
a = 5 , b = 11 , c = x , then
5² + 11² = x²
25 + 121 = x²
146 = x² ( take square root of both sides )
[tex]\sqrt{146}[/tex] = [tex]\sqrt{x^2\\}[/tex] , then
x = [tex]\sqrt{146}[/tex] ≈ 12.1 ( to the nearest tenth )