Answer:
The total angle = 140 rad.
Explanation:
We can find the total angle the blades have gone through by using the rotational motion formulas:
[tex]\boxed{\omega=\omega_o+\alpha t}[/tex]
[tex]\boxed{\theta=\theta_o+\omega_ot+\frac{1}{2} \alpha t^2}[/tex]
where:
Given:
[tex]\omega=\omega_o+\alpha t[/tex]
[tex]80 = 60 +10t[/tex]
[tex]10t=80-60[/tex]
[tex]\bf t=2\ s[/tex]
[tex]\theta=\theta_o+\omega_ot+\frac{1}{2} \alpha t^2[/tex]
[tex]=0+60(2)+\frac{1}{2} (10)(2)^2[/tex]
[tex]=\bf 140\ rad[/tex]