Answer:
Approximately [tex]2,\!470\; {\rm kg}[/tex] assuming that all the energy input was converted into kinetic energy.
Explanation:
When an object of mass [tex]m[/tex] travels at a speed of [tex]v[/tex], the kinetic energy of that object would be:
[tex]\displaystyle (\text{KE}) = \frac{1}{2}\, m\, v^{2}[/tex].
In this question, under the assumptions, the kinetic energy of the vehicle would be [tex](\text{KE}) = 17,\!385\; {\rm J}[/tex] ([tex]1\; {\rm J} = 1\; {\rm kg\cdot m^{2} \cdot s^{-2}}[/tex]) when the vehicle is travelling at a speed of [tex]v = 3.75\; {\rm m\cdot s^{-1}}[/tex]. To find the mass [tex]m[/tex] of the vehicle, rearrange the equation for the kinetic energy of the object and solve for mass:
[tex]\begin{aligned}m &= \frac{2\, (\text{KE})}{v^{2}} \\ &= \frac{2\, (17,\!385\; {\rm kg\cdot m^{2}\cdot s^{-2}})}{(3.75\; {\rm m\cdot s^{-1}})^{2}} \\ &\approx 2,\!470\; {\rm kg}\end{aligned}[/tex].