An airplane ticket has a perimeter of 70 centimeters. Its area is 300 square centimeters. What are the dimensions of the ticket?



Answer :

anbu40

Answer:

15 cm , 20 cm

Step-by-step explanation:

Framing algebraic equation and solving to find the unknown value:

Let the length of the ticket be 'x' cm and width be 'y' cm.

  Perimeter of the rectangle = 2* (length + width)

    2 * (x + y) = 70

Divide the entire equation by 2,

           [tex]\sf \dfrac{2*(x +y) }{2}= \dfrac{70}{2}[/tex]

                  x + y = 35

                         x= 35 - y

Area of the rectangle ticket = length *width.

It is given that the area is 300 cm².

⇒ x * y = 300

Substitute x = 35 - y in the above equation,

 (35 -y)*y = 300

Use Distributive property,

  35y - y² = 70

            0 = y² -35y + 300

y² - 35y + 300 = 0

sum = -35

Product = 300

Factors are: (-15), (-20)

{-15* -20 = 300 and (-15) + (-20) = -35}

Rewrite the middle term using the factors,

y² - 15y - 20y + 300 = 0

y* (y - 15) - 20*(y - 15) = 0

             (y -15) (y -20) = 0

y - 15 = 0    ; y - 20 = 0

       y = 15  ;  y = 20

Dimensions of the ticket are 15 cm , 20 cm