Answer:
acceleration = 6.15 × 10¹⁴ m/s²
Explanation:
We can find the magnitude of the acceleration of an electron in a 3500 N/C electric field by using these formula:
[tex]\boxed{F_{electric}=E\cdot q}[/tex]
[tex]\boxed{F=m\cdot a}[/tex]
By combining both formulas, we come to this:
[tex]\boxed{E\cdot q=m\cdot a}[/tex]
where:
Given:
[tex]E\cdot q=m\cdot a[/tex]
[tex]3500\times 1.602\times10^{-19}=9.11\times10^{-31}\times a[/tex]
[tex]\displaystyle a=\frac{3.5\times10^3\times1.602\times10^{-19}}{9.11\times10^{-31}}[/tex]
[tex]\displaystyle a=\frac{3.5\times1.602}{9.11} \times10^{(3-19+31)}[/tex]
[tex]a=0.615\times10^{15[/tex]
[tex]\bf a=6.15\times10^{14}\ m/s^2[/tex]