The velocity (in ft/s) of an object moving along a straight line is given by
v(t)=-32t+180
Find the displacement of the object over the given time intervals. Include units.
a. Displacement on [2, 6]:
b. Displacement on [0, 25]:



Answer :

To find the displacement of the object over the given time intervals, we need to integrate the velocity function \( v(t) = -32t + 180 \) with respect to time \( t \). a. Displacement on [2, 6]: To find the displacement over the interval [2, 6], we integrate the velocity function: \[ \int_{2}^{6} (-32t + 180) dt \] Integrating with respect to time gives: \[ \left[ -16t^2 + 180t \right]_{2}^{6} \] \[ = [-16(6)^2 + 180(6)] - [-16(2)^2 + 180(2)] \] \[ = [-576 + 1080] - [-64 + 360] \] \[ = 504 - 296 \] \[ = 208 \text{ ft} \] Therefore, the displacement of the object over the interval [2, 6] is 208 ft. b. Displacement on [0, 25]: To find the displacement over the interval [0, 25], we integrate the velocity function: \[ \int_{0}^{25} (-32t + 180) dt \] Integrating with respect to time gives: \[ \left[ -16t^2 + 180t \right]_{0}^{25} \] \[ = [-16(25)^2 + 180(25)] - [-16(0)^2 + 180(0)] \] \[ = [-10000 + 4500] - [0] \] \[ = -5500 \text{ ft} \] Therefore, the displacement of the object over the interval [0, 25] is -5500 ft.