Answer :

Answer:

[tex]b = -2[/tex]

[tex]c=\dfrac{51}{2}[/tex]

Step-by-step explanation:

The quadratic formula is used to solve quadratic equations of the form ax² + bx + c = 0 by providing the values of the variable x.

[tex]\boxed{\begin{array}{l}\underline{\sf Quadratic\;Formula}\\\\x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}\\\\\textsf{when} \;ax^2+bx+c=0 \\\end{array}}[/tex]

The given roots of a quadratic equation are:

[tex]x=\dfrac{1+i\sqrt{50}}{2}\;\;\textsf{and}\;\;x=\dfrac{1-i\sqrt{50}}{2}[/tex]

To find the values of b and c if a = 2, begin by substituting a = 2 into the quadratic formula:

[tex]x=\dfrac{-b \pm \sqrt{b^2-4(2)c}}{2(2)}\\\\\\\\x=\dfrac{-b \pm \sqrt{b^2-8c}}{4}\\\\\\[/tex]

Now equate this to the given roots:

[tex]\dfrac{-b \pm \sqrt{b^2-8c}}{4}=\dfrac{1\pm i\sqrt{50}}{2}[/tex]

Multiply the numerator and denominator of the right side of the equation by 2:

[tex]\dfrac{-b \pm \sqrt{b^2-8c}}{4}=\dfrac{2(1\pm i\sqrt{50})}{2(2)}\\\\\\\\\dfrac{-b \pm \sqrt{b^2-8c}}{4}=\dfrac{2\pm i\:2\sqrt{50}}{4}[/tex]

Multiply both sides by 4 to cancel the denominators:

[tex]-b\pm \sqrt{b^2-8c}=2\pm i\:2\sqrt{50}[/tex]

Comparing both sides of the equation, the value of b is:

[tex]-b = 2 \\\\ b = -2[/tex]

Substitute b = -2 into the equation:

[tex]-(-2)\pm \sqrt{(-2)^2-8c}=2\pm i\:2\sqrt{50}\\\\\\2\pm\sqrt{4-8c}=2\pm i\:2\sqrt{50}[/tex]

Subtract 2 from both sides:

[tex]\pm\sqrt{4-8c}=\pm i\:2\sqrt{50}\\\\\\\sqrt{4-8c}= i\:2\sqrt{50}[/tex]

Square both sides:

[tex]4-8c=i^2\left(2\sqrt{50}\right)^2\\\\\\4-8c=200\:i^2[/tex]

The square of the imaginary unit [tex]i[/tex] is equal to -1:

[tex]4-8c=200 \cdot (-1)\\\\\\4-8c=-200[/tex]

Solve for c:

[tex]-8c=-204\\\\\\c=\dfrac{-204}{-8}\\\\\\c=\dfrac{51}{2}[/tex]

Therefore, the value of c is 51/2.