Answer :

Answer:

B) -64; 0; -1 ± 4i

Step-by-step explanation:

The discriminant of a quadratic equation is a mathematical expression derived from its coefficients, indicating the nature and number of its real solutions.

[tex]\boxed{\begin{array}{l}\underline{\sf Discriminant}\\\\b^2-4ac\\\\\textsf{when $ax^2+bx+c=0$}\\\\\textsf{$b^2-4ac > 0 \implies$ two real solutions}\\\textsf{$b^2-4ac=0 \implies$ one real solution}\\\textsf{$b^2-4ac < 0 \implies$ no real solutions}\end{array}}[/tex]

Given quadratic equation:

[tex]x^2+2x+17=0[/tex]

Therefore, the coefficients are:

  • a = 1
  • b = 2
  • c = 17

Substitute the values of a, b and c into the discriminant formula:

[tex]b^2-4ac=2^2-4(1)(17)\\\\b^2-4ac=4-4(17)\\\\b^2-4ac=4-68\\\\b^2-4ac=-64[/tex]

Therefore, the discriminant is -64.

As the discriminant of the given equation is less than zero, there are no real solutions.

To solve x² + 2x + 17 = 0, use the quadratic formula:

[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\\\x=\dfrac{-2\pm\sqrt{-64}}{2(1)}\\\\\\x=\dfrac{-2\pm\sqrt{-64}}{2}\\\\\\x=\dfrac{-2\pm\sqrt{8^2\cdot -1}}{2}\\\\\\x=\dfrac{-2\pm\sqrt{8^2}\sqrt{-1}}{2}\\\\\\x=\dfrac{-2\pm 8i}{2}\\\\\\x=-1\pm4i[/tex]

Therefore, the two solutions are:

[tex]\textsf{Solution 1:}\quad x=-1-4i\\\\\textsf{Solution 2:}\quad x=-1+4i[/tex]