Answer :
Answer:
Electrostatic force = 22N
Explanation:
Please find the attached
Answer:
22.00 N
Explanation:
The electrostatic force F between two point charges q₁ and q₂ separated by a distance r can be calculated using Coulomb's law:
[tex]\sf F = k \cdot \dfrac{|q_1 \cdot q_2|}{r^2}[/tex]
where:
- F is the electrostatic force between charges in Newtons (N).
- k is Coulomb's constant (8.98755 × 10⁹ N m² / C²)
- q₁ and q₂ are the two charges in Coulombs (C)
- r is the shortest distance between the charges in meters (m).
Given values:
- [tex]\sf q_1 = 5.35 \times 10^{-7} \; C[/tex]
- [tex]\sf q_2 = -7.73 \times 10^{-6} \; C[/tex]
- [tex]\sf r = 4.11 \times 10^{-2} \; m[/tex]
Substitute these values into the formula:
[tex]\sf F = 8.98755\times 10^9\cdot \dfrac{|5.35 \times 10^{-7} \cdot -7.73 \times 10^{-6}|}{(4.11 \times 10^{-2})^2}[/tex]
Solve for F:
[tex]\sf F = 8.98755\times 10^9\cdot \dfrac{|-41.3555 \times 10^{-13}|}{16.8921 \times 10^{-4}}\\\\\\\\F = 8.98755\times 10^9\cdot \dfrac{41.3555 \times 10^{-13}}{16.8921 \times 10^{-4}}\\\\\\\\F = 8.98755\times 10^9\cdot \dfrac{41.3555}{16.8921} \times 10^{-13-(-4)}\\\\\\\\F = 8.98755\times 10^9\cdot \dfrac{41.3555}{16.8921} \times 10^{-9}\\\\\\\\F = 8.98755\cdot \dfrac{41.3555}{16.8921} \\\\\\\\F=22.003458659\\\\\\F=22.00\; N[/tex]
So, the electrostatic force between the two point charges would be 22.00 N.