Answer :

answer: 53°

angle C = 90° because it is inscribed in a semicircle, and all angles inscribed in na semi circle=90°

angle B is given to you as 37°
the sum of the interior angles of a triangle=180, so 180-90-37=angle A

angle A = 53°
hope this helps!
msm555

Answer:

[tex]\sf \angle A = 53^\circ [/tex]

Step-by-step explanation:

Given:

  • [tex] \sf \overline{AB} [/tex] is diameter.
  • [tex]\sf \angle B = 37^\circ [/tex]

To find:

  • [tex]\sf \angle A = ? [/tex]

Solution:

Recognize that for any inscribed angle in a circle, where the angle is formed by a diameter and a chord, the inscribed angle is always a right angle (i.e., [tex]\bold{\sf 90^\circ}[/tex]).

Since [tex]\bold{\sf \overline{AB}}[/tex] is a diameter of circle [tex]\bold{\sf O}[/tex], [tex]\bold{\sf \angle C}[/tex] (which subtends this diameter) must indeed be [tex]\bold{\sf 90^\circ}[/tex].

Apply the property that the sum of angles in a triangle is [tex]\bold{\sf 180^\circ}[/tex].

In triangle [tex]\bold{\sf ABC}[/tex]

We have

[tex]\sf \angle A + \angle B + \angle C = 180^\circ [/tex]

Substitute [tex]\bold{\sf \angle C = 90^\circ}[/tex] into the equation:

[tex]\sf \angle A + 37^\circ + 90^\circ = 180^\circ [/tex]

[tex]\sf \angle A + 127^\circ = 180^\circ [/tex]

[tex]\sf \angle A = 180^\circ - 127^\circ [/tex]

[tex]\sf \angle A = 53^\circ [/tex]

Therefore, the measure of [tex]\bold{\sf \angle A}[/tex] in triangle [tex]\bold{\sf ABC}[/tex] is [tex]\bold{\sf \boxed{53^\circ} }[/tex].

Other Questions