k²+7k+12/k²+10k+21 * 15/3k+12,k≠-3,-4,-7 br> You must choose from these answers 15/3k+21 br> 5/k+7 br> 5k+20/(k+7)(k+4) br> 5(k+5)/(k+3)(k+4) br>



Answer :

Answer:

[tex]\dfrac{5}{k+7}[/tex]

Step-by-step explanation:

Given multiplication:

[tex]\dfrac{k^2+7k+12}{k^2+10k+21}\cdot \dfrac{15}{3k+12},\quad k\neq -3,-4,-7[/tex]

Begin by factoring the numerator and denominator of the first fraction:

[tex]\textsf{Numerator:}\\\\k^2+7k+12\\\\k^2+4k+3k+12\\\\k(k+4)+3(k+4)\\\\(k+3)(k+4)[/tex]

[tex]\textsf{Denominator:}\\\\k^2+10k+21\\\\k^2+7k+3k+21\\\\k(k+7)+3(k+7)\\\\(k+3)(k+7)[/tex]

Therefore, the multiplication can be rewritten as:

[tex]\dfrac{(k+3)(k+4)}{(k+3)(k+7)}\cdot \dfrac{15}{3k+12}[/tex]

Now, factor the denominator of the second fraction:

[tex]\dfrac{(k+3)(k+4)}{(k+3)(k+7)}\cdot \dfrac{15}{3(k+4)}[/tex]

Divide 15 by 3:

[tex]\dfrac{(k+3)(k+4)}{(k+3)(k+7)}\cdot \dfrac{5}{(k+4)}[/tex]

Multiply the numerators and denominators:

[tex]\dfrac{5(k+3)(k+4)}{(k+3)(k+7)(k+4)}[/tex]

Cancel the common factors (k + 3) and (k + 4):

[tex]\dfrac{5}{k+7}[/tex]

Therefore, the solution to the multiplication is:

[tex]\Large\boxed{\boxed{\dfrac{5}{k+7}}}[/tex]