Answer:
The sequence is [tex]\bf U_n=7n-11[/tex].
Step-by-step explanation:
To find the nth term of this sequence, we can use the arithmetic sequence formula:
[tex]\boxed{U_n=U_1+(n-1)d}[/tex]
where:
Given:
[tex]U_5=U_1+(5-1)d[/tex]
[tex]24=U_1+4d\ ...\ [1][/tex]
[tex]U_9=U_1+(9-1)d[/tex]
[tex]52=U_1+8d\ ...\ [2][/tex]
Combining [1] & [2]:
[tex]24=U_1+4d\ \Longleftrightarrow\ 2U_1+8d=48[/tex]
[tex]52=U_1+8d\ \Longleftrightarrow\ U_1+8d=52[/tex]
------------------------------------------------- (-)
[tex]\bf U_1=-4[/tex]
Substitute the value of [tex]U_1[/tex] into [1]:
[tex]24=U_1+4d[/tex]
[tex]24=-4+4d[/tex]
[tex]4d=24+4[/tex]
[tex]d=28\div 4[/tex]
[tex]\bf d=7[/tex]
Substitute the values of [tex]U_1[/tex] and [tex]d[/tex] into the formula, then we have the equation of this sequence:
[tex]U_n=U_1+(n-1)d[/tex]
[tex]U_n=-4+(n-1)(7)[/tex]
[tex]U_n=-4+7n-7[/tex]
[tex]\bf U_n=7n-11[/tex]