Answer :
1. Let's create the matrices:
Matrix P (representing the person):
\[ P = \begin{pmatrix} 3 & 4 & 1 & 1 \\ 6 & 6 & 4 & 6 \\ 2 & 2 & 5 & 4 \end{pmatrix} \]
Matrix I (representing the cost of ingredients):
\[ I = \begin{pmatrix} 3.00 \\ 5.00 \\ 2.00 \\ 6.00 \end{pmatrix} \]
Now, let's multiply the matrices to find the total cost of ingredients:
\[ P \cdot I = \begin{pmatrix} 3 & 4 & 1 & 1 \\ 6 & 6 & 4 & 6 \\ 2 & 2 & 5 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3.00 \\ 5.00 \\ 2.00 \\ 6.00 \end{pmatrix} = \begin{pmatrix} 3(3) + 4(5) + 1(2) + 1(6) \\ 6(3) + 6(5) + 4(2) + 6(6) \\ 2(3) + 2(5) + 5(2) + 4(6) \end{pmatrix} = \begin{pmatrix} 47 \\ 102 \\ 64 \end{pmatrix} \]
2. The cost of ingredients for the pies Polly made is $64.
3. Let's calculate the total cost of ingredients for all pies baked by the three bakers:
\[ Total\ Cost = 47 + 102 + 64 = 213 \]
Half of the total cost of ingredients is $106.50. Now, let's compare this to the cost of ingredients for the pies Patricia baked:
\[ \text{Cost for Patricia} = 47 + 102 + 64 = 213 \]
Since $213 is equal to half of the total cost, the cost of ingredients for the pies Patricia baked is not more or less than half the cost of ingredients for all pies baked by the three bakers.
4. Let's create the matrix representing the income of each baker from each store:
Matrix S (representing Samuel's Sweets):
\[ S = \begin{pmatrix} 8 & 8 \\ 10 & 9 \\ 7 & 8 \\ 12 & 13 \end{pmatrix} \]
Matrix SS (representing Sugary Sarah):
\[ SS = \begin{pmatrix} 8 & 8 \\ 10 & 9 \\ 7 & 8 \\ 12 & 13 \end{pmatrix} \]
5. Now, let's find out which baker yielded the greatest income:
\[ S \cdot P^T = \begin{pmatrix} 8 & 8 \\ 10 & 9 \\ 7 & 8 \\ 12 & 13 \end{pmatrix} \cdot \begin{pmatrix} 3 & 6 & 2 \\ 4 & 6 & 2 \\ 1 & 4 & 5 \\ 1 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 47 & 92 & 39 \\ 62 & 126 & 55 \\ 56 & 116 & 63 \\ 88 & 168 & 82 \end{pmatrix} \]
The greatest income is yielded by the third baker (Polly), which is $116 from Samuel's Sweets.
6. Now, let's find out the income Polly realized from Sugary Sarah's:
\[ SS \cdot P^T = \begin{pmatrix} 8 & 8 \\ 10 & 9 \\ 7 & 8 \\ 12 & 13 \end{pmatrix} \cdot \begin{pmatrix} 3 & 6 & 2 \\ 4 & 6 & 2 \\ 1 & 4 & 5 \\ 1 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 47 & 92 & 39 \\ 62 & 126 & 55 \\ 56 & 116 & 63 \\ 88 & 168 & 82 \end{pmatrix} \]
The income Polly realized from Sugary Sarah's is $63.