Answer:
The absolute value equation:
[tex]x = \left|\!\dfrac{}{}-\!x\dfrac{}{}\right|[/tex]
is true when x is positive or zero.
Explanation:
This is because the absolute value function (denoted by vertical bars) always outputs a positive number. Any output from the absolute value function cannot equal a negative number, so x must be positive or zero.
Further Note
The piecewise definition of the absolute value function is:
[tex]|x| = \begin{cases}x\ \ \, \text{ if } x\ge 0\\ -x\text{ if }x < 0\end{cases}[/tex]