Answer:
\( 1092 \, \text{cm}^3 \).
Step-by-step explanation:
To find the volume of the square pyramid paperweight, we use the formula:
\[ \text{Volume} = \frac{1}{3} \times \text{base area} \times \text{height} \]
Given that the paperweight is in the form of a square pyramid with a base side length of 6 cm and a height of 91 cm, we first find the area of the square base:
\[ \text{Area of base} = \text{side length}^2 = 6 \, \text{cm} \times 6 \, \text{cm} = 36 \, \text{cm}^2 \]
Now, we plug the values into the volume formula:
\[ \text{Volume} = \frac{1}{3} \times 36 \, \text{cm}^2 \times 91 \, \text{cm} \]
\[ \text{Volume} = \frac{1}{3} \times 36 \times 91 \, \text{cm}^3 \]
\[ \text{Volume} = \frac{1}{3} \times 3276 \, \text{cm}^3 \]
\[ \text{Volume} = 1092 \, \text{cm}^3 \]